Beyond WRF: MPAS A Global Nonhydrostatic Atmospheric Model

MPAS: Model for Prediction Across Scales Based on Voronoi Tesselations (hexagons)

Jointly developed, primarily by NCAR and LANL for weather, regional climate and climate applications.

MPAS infrastructure - NCAR, LANL, others. MPAS - <u>A</u>tmosphere (NCAR) MPAS - <u>O</u>cean (LANL) MPAS - <u>I</u>ce, etc.

Bill Skamarock, Joe Klemp,
Michael Duda, Sang-Hun Park,
Laura FowlerNCAR/NSFTodd RinglerLANL/DOEJohn ThuburnExeter UniversityMax GunzburgerFlorida State UniversityLili JuUniversity of South Carolina

Why Voronoi Tesselations (Hexagons)?

lat-long grid (WRF)

hexagonal grid (MPAS)

Lat-long grid issues:

gridlines converge at the poles, needs polar filtering - loss of monotonic/PD transport, does not scale on MPP architectures.

Advantages over lat-long grid:

No poles, scales well on MPP architectures, monotonic/PD conservative transport, flexible local refinement (variable resolution grids). <u>Possible issues:</u> unstructured grid solver (efficiency), irregular grid (high-order schemes need development).

Cell center is cell center-of-mass

Edges of dual grid intersect edges of primary grid at right angles.

WRF Workshop June 2010

North American refinement

Refinement for equatorial convection

Refinement around the Andes

Dynamical Core Development

<u>SW solver:</u> Williamson et al (JCP 1992) test suite - results are similar to other icosahedral-grid models. Initial tests with variable resolution meshes.

<u>Atmospheric solvers</u>: Conservative (flux-form) equations. Hydrostatic solver (pressure coordinate), nonhydrostatic solver (height coordinate), both solver work on the sphere, on doubly-periodic Cartesian (3D; x,y,z) domains, and 2D (x,z) planes.

Test Suite

Global: J&W baroclinic wave simulations on the sphere. *2D (x,z) plane:* IG waves, mountain waves, density currents, squall lines. *3D planes:* Squall-lines and supercells.

MPAS nonhydrostatic core

WRF Workshop June 2010

Hydrostatic MPAS core

Jablownowski and Williamson unstable jet Normal mode solution Most unstable mode has wavenumber 9

Hydrostatic MPAS core

Jablownowski and Williamson unstable jet Moist initial state Warm rain microsphysics

Initial state zonal velocity, potential temperature and moisture

(from Sang-Hun Park)

WRF Workshop June 2010

Jablonowski and Williamson Unstable Jet, Normal-Mode Initialization Mesh with local refinement (240-60 km cell spacing), Kessler moist physics

WRF Workshop June 2010

Vert. int. q_c (kg/m²)

(from Sang-Hun Park)

Squall-Line Tests Low-level shear (0-2.5 km), Weisman-Klemp sounding Warm-bubble perturbation

Initial tests use perfect hexagons Periodic in x and y 2D (x,z) simulations, 2 rows (y) are used

Squall-Line Tests Low-level shear (0-2.5 km), Weisman-Klemp sounding Warm-bubble perturbation, results at 3 hours

Supercell Tests

Low-level shear (0-5 km, 30 m/s), Weisman-Klemp sounding, Warm-bubble perturbation, Periodic in x and y (Lx, Ly ~ 84 km), 3D (x,y,z) simulations, $\delta h = 500$ m

Reference solution

Vertical velocity contours at 1, 5, and 10 km (c.i. = 3 m/s) 30 m/s vertical velocity surface shaded in red Rainwater surfaces shaded as transparent shells Perturbation surface temperature shaded on baseplane

Supercell simulations, reference cloud model and MPAS 500 m grid, horizontal cross sections, solution at 2 hours

WRF Workshop June 2010

(from Sang-Hun Park)

Supercell simulations, reference cloud model and MPAS 500 m grid, solution at 2 hours, vertical cross sections

WRF Workshop June 2010

(from Sang-Hun Park)

Beyond WRF: MPAS - Summary

3D Solvers

- Hydrostatic 3D SVCT solver (pressure coordinate).
- Nonhydrostatic 3D SVCT solver (height coordinate).
- Both solvers work on the sphere and on 2D and 3D Cartesian domains.
- Tests results confirm viability of Voronoi C-grid discretization at large scales (global) and cloud-permitting scales for both solvers.
- Variable-resolution grid results are encouraging.

Future Development

- Weather, regional climate and climate physics suites.
- Further testing of variable resolution meshes, physics development.
- Further development and testing of higher-order transport schemes.

Expectations

- NWP testing by the end of this year.
- Friendly-user release summer 2011?

WRF Workshop June 2010